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Abstract. A model assuming a non-continuous structure of glasses is established to interpret 
the inelastic neutron scattering and Raman scattering. The ‘boson’ peak in Raman scattering 
is related to the vibrational density of states ‘excess’. These two related features are a result 
of vibrations localized in the blobs that compose the glass. Size distributions of the blobs are 
deduced from neutron and Raman scatterings. 

1. Introduction 

The low-frequency vibrational dynamics in glasses or liquids depend strongly on the 
static or transient organization, respectively, or on the disordered structure. In the 
frequency domain from about 1 cm-’ to 100 cm-’, universal features appear in the 
different responses, which are functions of the density of vibrational states (DVS). In 
particular the inelastic neutron scattering (Buchenau et a1 1984,1986, Malinovsky et a1 
1990) and the heat capacity (Pohll981) manifest a DVS excess. 

The low-frequency broad band in the Raman scattering spectrum, called the ‘boson 
peak’, is another universal characteristic of glasses. It is also present in numerous liquids. 

However, until recently it was not clear that the ‘boson peak’ is related to an excess 
in the DVS. The low-frequency Raman scattering of light is due to vibrational modes 
which are localized by the disorder. The Raman intensity Z(w) is usually written in the 
form (Jackle 1981) 

I ( 0 )  = C ( o ) R ( o ) ( n ( w )  + l)/o 

where n(w)  + 1 is the Bose factor for Stokes scattering, R ( w )  is the Raman DVS and 
C(o) describes the coupling between the light wave and the vibration. The derivation 
of C(o) from the model of Martin and Brenig (1974), which is a modification of 
an earlier theory of Whalley and Bertie (1967), has been extensively used for the 
interpretation of Raman scattering from glasses. From this model 

where U is the sound velocity and 20 the structural correlation length. A continuous 
disordered network, characterized by the correlation length 20, is assumed for glasses. 

0953-8984/90/5110227 + 08 $03.50 @ 1990 IOP Publishing Ltd 10227 



10228 E Duual et a1 

The expression (2) for the coupling constant C(w) has a maximum for w = u/a 
and, consequently, the boson peak in Raman scattering was interpreted as being the 
maximum of C(o). However, this interpretation is questionable following the results of 
the comparison of Raman scattering with inelastic neutron scattering and heat capacity 
for several glasses (Ahmad et a1 1986, Malinovsky et a1 1990). Ahmad et a1 (1986), using 
the DVS deduced from heat capacity, interpreted the Raman scattering of vitreous AS& 
using expression (1) and showed that C(o) has no maximum but rises monotonically 
with the frequency. This behaviour is confirmed for vitreous silica using the vibrational 
density of states deduced from the inelastic neutron scattering measurements of Buch- 
enau et a1 (1984,1986): C(o) does not yield a maximum and the variation of the Raman 
scattering is close to the variation of the ‘neutron’ DVS. Very recently Malinovsky et a1 
(1990) compared their measurements of Raman and neutron scatterings from different 
glasses, in particular from Si02  and As2S3. They reached the same conclusion: the 
maximum of the low-frequency Raman scattering (boson peak) does not result from a 
maximum of the coupling constant but rather from a maximum of the DVS excess with 
respect to the Debye density of states. 

Buchenau eta1 (1984,1986) identified the additional low-frequency modes as coupled 
rotations of S i04  tetrahedra. In so far as the apparent density of states excess is universal 
for glasses, the interpretation of Buchenau et a1 seems to us to be incomplete. In our 
opinion the shape of the DVS, and of the low-frequency Raman scattering spectrum, is 
related to the universal structure of glasses. The aim of this paper is to discuss the relation 
between low-frequency vibrational dynamics and the structure of glasses and to suggest 
an interpretation. 

2. Model 

In figure 1 the reduced intensity of Raman scatteringZ(w)/(n(o) + 1) of vitreous A&, 
deduced from the measurements of Nemanich (1977) is compared with the neutron DVS, 
N(w) ,  determined by Malinovsky et a1 (1990) from inelastic neutron scattering. The 
similarity of the two curves in logarithmic coordinates is remarkable, apart from a 
slight translation of Z(o) / (n(w)  + 1) towards the low frequencies. One obtains, after 
comparison: 

Z(w) / (n(o)  + 1) = N(w)wb ( 3 )  

with b = 0.4 & 0.1. Comparing (1) and ( 3 ) ,  and assuming that R(o) is equal to N ( w ) ,  
we obtain C(o) wc with c = 1.4 t 0.1. Malinovsky et a1 (1990) found a similar value 
of c .  It is now clear that the curvature of Z(o)/(n(o)  + 1) does not arise from C(w) ,  but 
rather from the density of states R(w) or N ( w ) .  Furthermore the DVS and the coupling 
constant C(w) do not reflect the Debye model where both vary as w 2  (Jackle 1981). 

In figure 2 the reduced intensity of vitreous S i02  is compared with the neutron DVS 
determined by Buchenau et a1 (1986). 

The features of figure 2 for S i02  are the same as those of figure 1 for AS&. The value 
of the coefficient cis 0.25 +- 0.1. However, in the domain 60-120 cm-’ c varies between 
1 and 1.5. 

From these experimental results and their comparison, three points have to be 
emphasized: 

(i) The Debye model fails to interpret the DVS and the Raman scattering. 



Vibrational dynamics and the structure of glasses 10229 

SI 0 2  

,-? 

Q 

Figure 1. Neutron density of vibrational states, Figure 2. Neutron density of vibrational states, 
N(w), (Malinovsky er a1 1990) and Raman N ( w )  (Buchenau eta1 1986), and Raman reduced 
reduced intensity (Nemanich 1977) of As& glass. intensity (our measurements) of S O z  glass. 

(ii) At low frequencies N ( w )  varies more rapidly than wd- '  with d = 3. This means 

(iii) C(o) is not related to the correlation length of a disordered lattice. 

As emphasized before N ( o )  cannot be interpreted as additional vibrations specific 
to a particular glass but is related to the glass structure itself. Novikov (1989) assumes 
that the density of states excess results from the vibrations of disclination defects. The 
existence of such defects is implied by the curved space model of Mosseri and Sadoc 
(1984). Like Buchenau et al, Novikov believes that the defect vibrations add to the 
Debye vibrations of the rest of the glass. 

In the model presented in this paper it is assumed that the network is not continuous, 
but composed of blocks or blobs, of size 10-20 A. In contrast to the well known models 
(Randall et al 1930, Evstropyev et a1 1972) the blobs are not considered to be micro- 
crystalline, but disordered. The disordered glass network is disrupted by defects which 
segregate the structure into blobs. The bonding between atoms of nearest-neighbour 
blobs is certainly weaker than the bonding inside the blobs. Consequently the vibrational 
dynamics can be divided into two regimes: 

that N ( w )  does not correspond to the vibrations of a continuous network. 

(i) the low-energy regime which concerns the motion of blobs with respect to each 

(ii) the high-energy regime that accounts for the vibrations in blobs. 
other; 
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There is a gap between these regimes, but it is probably in this gap that defect excitations 
appear, like the well known two-level systems (TLS) (Anderson et all972). Nevertheless 
we expect that the effective density of states in the high-energy regime increases as the 
number of blobs able to accommodate the vibrations increases. 

The size distribution of blobs is symbolized by the functionf(a). The lowest-energy 
vibrational mode localized in a blob has a frequency wo such that (Duval et al 1986, 
Boukenter et al1989) 

0 0  = S(v/2a) (4) 

where v is the velocity of sound in a blob, 2a is the size of the blob, and S is a shape 
factor. Therefore the size distribution corresponds to a frequency distribution of the 
blob fundamental modes. We define a distribution F(wo) which is such that F(coo) d u o  
is the ratio of the volume occupied in the glass by the blobs whose fundamental mode 
frequencies lie between w o  and wo + d wo to the glass sample volume. 

If the vibrations have a wavelength much longer than the mean value of 2a, they are 
delocalized in the glass. At the other extreme the vibrations with a wavelength smaller 
than about 4a are localized in the blobs. There is a crossover between delocalized long- 
wavelength vibrations and vibrations localized in blobs. For the delocalized vibrations 
the density of states is a Debye density of vibrational states D ( o )  CC wz .  

The vibrations localize more and more as the number of blobs of size 2a greater than 
about two wavelengths increases. If g(w) is the real DVS inside the blobs, the observed 
effective DVS geff(w) of vibrations localized in blobs is 

If w1 is the upper limit for the frequency wo, which corresponds to the smallest size 
of blob, then for U > wl, 

geff(0) a (6) 

Therefore the DVS inside the blobs is given by the variation in geff(w) for w > wl. 
The curves of N(w)  in figures 1 and 2 are in accordance with equation (5). Assuming 
that N ( w )  is equal togeff(w), obtained from the high-frequency linear part of the curves, 
we obtain g(w) = wn with n = 0.35 k 0.1 for AszS3 and n = 0.2 t 0.1 for S O 2 .  

Dividinggeff(w) by w" and taking the derivative, we obtain bell-shapedcurves (figures 
3 and 4) for the distributions F(wo).  The maximum is situated at 20 f 3 cm-' for As2S3 
and 37 cm-' for S O 2 .  

It isinteresting to compare the inelastic neutron scatteringwith the Raman scattering. 
If we assume that the Raman DVS, R ( w ) ,  like the neutron DVS, N ( w ) ,  is equal to 
the effective DVS, geff(w), then from the expression (1) the reduced Raman intensity 
becomes: 

I (w) / (n (w)  + 1) = C(W>/W geff(w)* (7) 

WehaveseenbeforethatC(w) a wCwithc = 1.4 f 0.1forAsZS3,andc = 0.25 f 0.1 
in the major part of the Raman spectrum of SO2. Then, taking the derivative of the 
ratio Z(w)wl-c/(n(w) + l ) ,  from ( 5 )  and (7), we obtain again F(wo).  The distributions 
F(wo) obtained from Raman and neutron scatterings are compared in figures 3 and 4. 
The maximum of the Raman bell-shaped curve is situated at 15 f 2 cm-' for As2S3 and 
at 43 t 3 cm-' for SO2. These values are very close to those obtained from neutron 
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Figure 3. Distribution functions F(w,) deduced 
from: (a) neutron scattering (Malinovsky et a1 
1990); (b) Raman scattering (Nemanich 1977) for 
As& glass. 
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Figure 4. Distribution functions F(w,) deduced 
from (a) neutronscattering(Buchenaiietall986); 
(b) Raman scattering (our measurements) for 
SiOz glass. 

scattering. For S O z  there is a supplementary bump between 60 and 120cm-'. This 
anomaly was noted above and merits a specific study which will be published later. 

From expression (4) it is possible to deduce the most probable size of blob if we know 
the shape factor S. From Raman spectroscopy, however, it is difficult to deduce their 
shape. For spherical particles S is close to 0.8 (Duval et a1 1986) and for linear objects 
S = 0.5. Certainly blobs are not exactly spherical and provisionally we choose an inter- 
mediate value, S = 0.65. Taking U = 1690 m s-l for AsZS3 and 4100 m s-l for SiOz 
(Graebner and Golding 1986), with w o  = 17 cm-' for As2S3 and 40 cm-' for S O 2 ,  we 
find for the maximum of the size distribution that 2a = 21 8, and 22 A, respectively. 
These values are not surprising and are in agreement with the size estimated from the 
width of the first sharp diffraction peak of As2S3, which is about 20 A (de Neufville et a1 
1973/74, Nemanich 1977). 

The DVS inside the blobs is approximatelyg(w) = w0,35 for As2S3 andg(w) = wo for 
S O 2 .  Assuming g(w) = w d - l ,  the dimensionality d would be 1.35 and 1.2 respectively. 
It is tempting to treat d as a fractal dimensionality. More simply these dimensionalities, 
close to one, can reflect the chain-like shape of blobs. 

There is a clear difference between the values of the coupling coefficient C ( w )  of 
As2& and S O 2 .  The w-dependencies are, respectively, and w0.25. This difference 
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can be interpreted as being due to the presence of supplementary fluctuations, in the 
As2S3 blobs, with a correlation length smaller than the blob size: fluctuations that would 
not exist in SO2. It was shown (Rousset et a1 1990) that the effect of these fluctuations 
or of a supplementary disorder on C( o) is to add a term that is equal to the dimensionality 
d in the o-exponent. 

3. Discussion and conclusion 

In the model presented in this paper, the structure of glass is treated as an aggregation 
of blobs of size -20 A. In the case of As& and SiOz the blobs are not microcrystallites. 
For As2S3 this conclusion is in agreement with the work of Phillips (1981). But this 
characteristic is probably not universal. For example, in amorphous Si the blobs would 
be crystalline (Ourmazd et a1 1985). 

Our model is reminiscent of the cellular model of Baltes (1973). However, in this 
early model only one size of cell was considered, and a Debye density of states was 
assumed inside the cells. The cellular model of Baltes was discussed by Tait (1975) and 
this was reported by Pohl(1981). Both authors showed the deficiency of Baltes model 
which is the result of a well defined cell shape. 

Until recently it was generally agreed (Jackle 1981) that the low-frequency Raman 
scatteringZ(w)/(n(o) + 1), which has a w3-dependence (Nemanich 1977), was in agree- 
ment with the Debye model and the Raman scattering of phonons. The comparison of 
inelastic neutron scattering and Raman scattering shows that this interpretation is wrong, 
since the DVS does not obey the Debye law. The deviation from the w3-behaviour was 
interpreted as a deficiency of the Debye model, which was related to the fact that the 
acoustic phonon branches of the corresponding crystal showed strong dispersion in the 
same frequency region as the deviation (Jackle 1981). We think that this deviation is 
due, instead, to the specific structure of glass and is a general feature. The non-deviation 
appears accidental. 

Novikov (1989) interprets the inelastic neutron scattering as being due to the presence 
of vibrations localized in disclination defects, which add to normal Debye vibrations. 
He shows that the number of 'defect' atoms that form disclinations amounts to 10-15% 
of the total number of atoms. We did not observe the Debye density of states for the 
experimental neutron density of vibrational states (Buchenau et a1 1984, Malinovsky et 
a1 1990) at w > 20 cm-' and w > 40 cm-' for As,S3 and S O 2 ,  respectively. In conse- 
quence we do not think that non-Debye vibrations concern only the defects vibrations. 
Nevertheless the question remains open. 

Two objections can be raised against our model. The first is the following: until now 
no direct and clear observation of the assumed cluster structure of glasses has been 
achieved, by e.g. electron microscopy nor by small-angle neutron or x-ray scattering. 
However, it is likely that the non-continuous structure, which can be observed in 
vibrational dynamics, does not show a corresponding well resolved fluctuation density. 
As indicated above, blobs exist because of a bonding that is weaker between atoms in 
different nearest-neighbour blobs than between atoms inside a blob. Certainly the blobs 
do not have a simple shape and probably consist of chains that are more or less ramified. 

The second objection is explicit in the papers of Buchenau et a1 (1984, 1986) and 
concerns silica-glass especially. Neutron elastic scattering shows a relatively strong first 
peak at the momentum transfer value Q-= 1.6 A-'. However, the corresponding first 
peak in the inelastic structure factor S( Q) is relatively weak for the frequency domain 
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considered here. It was mainly because of this that Buchenau et a1 deduced that the 
excess density of states results from coupled rotation of bonded S i04  tetrahedra, since 
the scattering from such excitations does not have a first peak at 1.6 A-'. A priori this 
peak would appear clearly for sound waves. 

In fact this first peak is related to the distance between atoms in different nearest- 
neighbour tetrahedra. Therefore, vibrations would give rise to the first peak in S ( Q )  
if the atoms of both nearest-neighbour tetrahedra had equivalent displacements or 
oscillated approximately in phase (Buchenaii et a1 1985, 1986). Now our blobs can be 
considered as more or less ramified and tortuous chains of tetrahedra connected by 
shared corners. The distribution of shared (or non-shared) corners is certainly random. 
On the other hand, the angle of rotation about the Si-Si axis of a tetrahedron relative 
to the nearest neighbour varies along the chain (Guttman and Rahman 1986). Conse- 
quently the tetrahedra in a blob are non-equivalent in the chain, and the vibrational 
displacements of atoms in the different nearest-neighbour tetrahedra are non-equivalent 
too, so the vibrations are not in phase with the oscillations of the structure factor. This 
can explain the weakness of the 1.6 A-' peak in the inelastic structure factor. Without 
knowing the precise structure of the blobs it is difficult to imagine the vibrational 
motion although it is possible that this motion partially consists of relative rotations of 
tetrahedra. 

This model seems to us to be consistent since it allows us to deduce the low-frequency 
Raman scattering precisely from the inelastic neutron scattering, apart from a slight 
anomaly for S i02 .  Furthermore, to a first approximation, it interprets the thermal 
measurements. From the DVS deduced from the heat capacity of Ahmad et a f  (1986) a 
similar variation of the distribution of F(wo) is found with a maximum at 15 cm-'. On 
the other hand it is clear that the plateau in the thermal conductivity corresponds to the 
localization of vibrational modes in the blobs. The limits of the plateau (Graebner and 
Golding 1986) are in agreement with the distribution F(w,). 
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